

The Ecosystem Approach

BESSA training workshop, ICRAF, March 23-April 3, 2009

Millennium Ecosystem Assessment

ECOSYSTEMS and Human Well-Being

Synthesis

- Over the past 50 years, humans have changed ecosystems <u>faster</u> <u>than at any other time</u>
- Significant increases in human well-being, but at <u>expense of</u> <u>ecosystem degradation</u>
- Degradation is getting worse, and is a <u>barrier to achieving MDGs</u>
- Challenge is to <u>reverse</u>
 <u>ecosystem degradation</u> while
 <u>meeting increased demands for</u>
 <u>services</u>
- Need for <u>policies</u>, <u>institutions &</u> <u>practices</u> to reduce negative tradeoffs, and/or provide positive synergies

- Thresholds may be reached, beyond which change is irreversible
 - Disease

- Water quality
- Eutrophication
- Fisheries collapse
- Shifts in regional climate
- Changes are being borne disproportionately by the poor
 - Greater inequity
 - Social conflict
 - Poverty
- Use of ecosystem services often influenced by markets non-market services 'taken for granted' – not valued explicitly

Ecosystem Services framework

THE MACAULAY

Source: Millennium Ecosystem Assessment

Coupled human-ecological systems

The Ecosystem Approach

- Strategy for the <u>integrated management of land, water and</u> <u>living resources</u> that promotes conservation and sustainable use in an equitable way
- Encompass the <u>essential structure</u>, <u>processes</u>, <u>functions</u> and <u>interactions</u> among organisms and their environment
- <u>Humans</u>, with their cultural diversity, are an <u>integral</u> <u>component</u> of many ecosystems
- <u>Adaptive management</u> to deal with the complex and dynamic nature of ecosystems – non-linear, time-lags, discontinuities
- <u>No single way</u> to implement the Ecosystem Approach depends on local context

12 EA principles

1. The objectives of management of land, water and living resources are a matter of <u>societal choices</u>

- 2. Management should be <u>decentralized to the lowest appropriate</u> <u>level</u>
- 3. Ecosystem managers should consider the effects (actual or potential) of their activities on <u>adjacent and other ecosystems</u>
- 4. Recognizing potential gains from management, there is usually a need to understand and manage the ecosystem in an <u>economic context</u>. Any such ecosystem-management programme should:
 - a. <u>Reduce market distortions</u> that adversely affect biological diversity
 - b. <u>Align incentives</u> to promote <u>biodiversity conservation</u> and <u>sustainable use</u>
 - c. <u>Internalize costs & benefits</u> in the given ecosystem
- 5. <u>Conservation of ecosystem structure and functioning</u>, in order to maintain ecosystem services, should be a priority target of the ecosystem approach

6. Ecosystem must be <u>managed within the limits</u> of their functioning

- 7. The EA should be at the <u>appropriate spatial and temporal</u> scales
- 8. Recognizing varying temporal scales and lag-effects, objectives for <u>ecosystem management should be set for the long term</u>
- 9. Management must recognize the <u>change is inevitable</u>
- 10. <u>Appropriate balance</u> between, and integration of, <u>conservation</u> <u>and use</u> of biological diversity
- 11. <u>Consider all forms of relevant information</u>, including scientific and indigenous and local knowledge, innovations and practices
- 12. <u>Involve all relevant sectors of society</u> and scientific disciplines

Socio-ecology

Knowledge: Indigenous knowledge

- Concepts of 'capital' and 'connectedness'
- 'Fast' and 'slow' variables
- Interactions between different levels
- Multiple-equilibria systems
- Resilience
- Persistence and innovation

Socio-ecological processes

THE MACAULAY INSTITUTE

Are biofuels really green?

THE MACAULAY INSTITUTE /

- 3-5% of N applied as fertiliser ends up in the atmosphere as N₂O
- Biodiesel from oilseed rape emits 1-1.7 times more GHGs than it saves through replacing fossil fuels
 - Crutzen et al., 2007. Atmos. Chem. Chem. Phys. Discuss., 7:11191– 11205.

- Millennium Ecosystem
 Assessment
- Joint initiative between
 - DFID (UK Department for International Development)
 - NERC (Natural Environment Research Council)
 - ESRC (Economic and Social Research Council)
- Three phases
 - Situation analyses
 - Capacity building/network establishment
 - Research projects

Situation analyses

- China
- Semi-arid sub-Saharan Africa
- Amazon basin & Andean catchment
- India-Hindu Kush-Himalayas
- Cross-cutting: urbanisation, marine/coastal

BESSA: Building Ecosystem Services for Semi-Arid Africa

BESSA training workshop, ICRAF, March 23-April 3, 2009

Objectives of the Project

- 1. Strengthen capacity to formulate research agenda, write successful proposals, manage research projects, use the outputs
- 2. Develop approaches, methods, tools, datasets & networks
- 3. Create a demand for research

Partners

- Macaulay Land Use Research Institute
- ICRAF
- University of Aberdeen
- University of York
- CEEPA, University of Pretoria
- Jomo Kenyatta University of Agriculture and Technology

Work plan

- Training workshop
- Case studies
- Exchange visits
- Follow-up workshop to write proposal for Phase II

Outputs

- Workshop summary
- Network of researchers on ecosystem services
- Journal article reviewing approaches and the limitations to capacity building in ecosystem services research
- Proposal for future funding

ESPA Situation Analysis for Arid and Semiarid Africa

BESSA training workshop, ICRAF, March 23-April 3, 2009

- Which ecosystem services are important for the well-being of the poor?
- Trends & drivers of these ecosystem services?
- What capacity exists for ecosystem management?
- What knowledge gaps exist?

THE MACAULAY

• What success stories are there from the region?

Important ecosystem services

• Provisioning services

- Agricultural production home consumption, income generation, safety-net (incl. livestock)
- Energy: Fuelwood, hydropower?
- Forest/agroforestry products?
- Water but water per capita has declined pollution, invasive plants, wetland degradation, soil erosion
- Regulating services
 - Flooding, drought, poor air quality, degraded soils
 - C sequestration?
 - Human health?
- Cultural services
 - traditional norms, taboos and practices ecosystem management
 - Ecotourism
 - Traditional medicine?
- Supporting services
 - Soil nutrients (N, P, K)
 - biodiversity

Ultimate

- Global markets
- Population increase
- Climate change
- Governance
- HIV/AIDS
- Poverty itself?
- Development/industrialisation?
- Proximate
 - Land use change
 - Lack of options?
 - Climate change/variability?
 - Changes in consumption habits?
 - Declining water quality?
 - Human health: malaria, HIV/AIDS
 - Overuse of resources
 - Urbanisation
 - Tourism

Capacity gaps

- Improving policy and institutional environment
- Resources, infrastructure?
- Limitations of skill base
- Capacity at district and local level
- Lack of integrated planning and management
- Capacity in civil society
- Capacity for monitoring
- Lack of action on climate change
- Capacity to manage selected ecosystem services for poverty alleviation
- Need to integrate local knowledge into research?
- Few scholarly networks to promote good social and ecological science, integrate science into policy-making

• Empirical data and methods to collect them

- Need to understand socio-ecological processes
- Need to promote knowledge development and knowledge sharing
- Monitoring to enable adaptive management

- Managing ecosystem services needs to be part of broader poverty alleviation initiatives
- <u>Ecosystem management agencies</u> need to consider poverty alleviation
- Social welfare and economic development agencies need to consider management of ecosystem resources
- <u>Provisioning services</u> a major component of livelihood strategies – need to strengthen and diversify
- Management of ecosystem resources will <u>benefit all</u> <u>inhabitants</u> in a region, especially the poor

Sustainability & resilience

Robin Matthews Climate Change Theme Leader Macaulay Institute Aberdeen AB15 8QH United Kingdom

BESSA training workshop, ICRAF, March 23-April 3, 2009

Adaptive cycles

- Concepts of 'capital' and 'connectedness'
- 'Fast' and 'slow' variables
- Interactions between different levels
- Multiple-equilibria systems
- Resilience
- Persistence and innovation

Cycle	Approximate duration (years)
Kitchin, or business cycle	3–7
Juglar	8-10
Kuznets	15-25
Kondratiev	45-60

THE MACAULAY

Schumpeter (1950): 'Creative destruction'

Resilience and scale interactions

THE MACAULAY

(from Allison & Hobbs, 2004)

(from Gunderson & Holling, 2001)

Resilience

Engineering Resilience: The capacity to resist a perturbation, or return to equilibrium after a shock

THE MACAULAY INSTITUTE

- **Ecological Resilience: Capacity** of a system to absorb perturbations and remain in functionally similar state
- 'Surprise' perturbation may move system into another 'basin of attraction'

Mulga rangelands, Australia (Walker, 2002)

Adaptive capacity

- The capacity of actors in the system (i.e. people) to manage resilience to achieve desirable outcomes:
 - by changing the stability landscape move basins of attraction
 - by influencing the trajectory of the system itself either avoid crossing into another basin, or engineer such a crossing
 - new technologies, institutional change
 - preserve the elements that enable the system to renew and reorganise

Brian Fagan (2004): Short-term resilience, long-term vulnerability

Mesopotamia: Key to success was well developed agricultural irrigation ...

... but salinization led to political collapse, abandonment, and desertification

THE MACAULAY

(from Redman, 2002)

GAIA Daisyworld

THE MACAULAY

(Lovelock, 1990)

Adaptive cycles in W Australia

Socio-ecological systems

- System-level characteristics
 - Emergent behaviour
 - Resilience

- Adaptive capacity
- Size (no. of components)
- Connectance
- Multiple 'basins of attraction'
- Non-equilibrium
- Self-organisation
- Cross-scale interactions
- Surprises!

- Biophysical processes
 - climate, soils, plants, animals (H_2O , C, N, P)
- Economic processes
 - Financial flows
 - Markets
 - Profit maximisation
 - Risk minimisation
- 'People' processes
 - innovation
 - communication
 - memory/learning/knowledge
 - perception/mental models
 - planning/foresight
 - decision-making
 - actions/behaviour
 - institutions and social organisation